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Abstract
We use the Parikh–Wilczek method to study the tunnelling radiation from the
event of the black string, which is asymptotically anti-de Sitter and possesses
cylindrical symmetry. We show that higher corrections to the semi-classical rate
which are caused by energy conservation and angular momentum conservation
exist and the emission rate has completely the same functional form as that for
spherically symmetric or axisymmetric black holes.

PACS number: 04.70.Dy

Hawking [1] proved that the black hole could radiate particles quantum-mechanically. Since
Gibbons and Hawking [2] demonstrated that the radiation is exactly thermal, much work to
prove that the energy spectrum is precisely thermal spectrum has been done [3–6]. However,
there are two puzzles: one is where the barrier appears during the radiation. The other is
the purely thermal spectrum, from which we cannot obtain any other information but one
parameter, i.e. temperature, this means that if things are absorbed into the black hole, then
their important information such as unitarity will be lost during the emission and there will
be no marks left once the black hole is evaporated out. Recently, Parikh and Wilczek [7–9]
proposed a method to calculate the emission rate at which particles tunnel across the event
horizon. They treat Hawking radiation as a tunnelling process. They find that the barrier
is created by the outgoing particle itself, and their key insight is to find a coordinate system
which is well behaved at the event horizon to calculate the emission rate. In this way, they have
calculated the corrected emission spectrum of the spherically symmetric black holes, such as
Schwarzschild black holes and Reissner–Norström black holes. Last year, this method was
used to calculate the emission rate of particles from other spherically symmetric black holes
[10–14] and also extended to investigate the tunnelling radiation from axisymmetric black
holes [15–18]. In this paper, we wish to extend this method to a black string and calculate
the corrected emission spectrum of particles from its event horizon. This background is
chosen for several reasons: it possesses cylindrical symmetry, it represents a system which
may physically exist in the universe and there has also been a recently revived interest in
anti-de Sitter spacetime in the context of conformal field theories.
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In Boyer–Lindquist coordinates, the line element in a black cosmic string spacetime can
take the following form: [19]

ds2 = − 1

α2ρ2

[
�ρ − 2(1 − λ)

1 + λ
�ρ

]
dt2 +

α2ρ2

�ρ

dρ2 + α2ρ2 dz2

+
1

α4ρ2
(�ρ + �ρ) dϕ2 − 8a�ρ

3α2ρ2(1 + λ)
dt dϕ, (1)

where

�ρ = 2(1 + λ)Mαρ − 4Q2, α2 = −1

3
�(α > 0),

�ρ = α4ρ4 − 2(3λ − 1)Mαρ +
4(3λ − 1)

λ + 1
Q2, (2)

λ =
√

1 − 8a2α2

9
, a = J

M
.

Here M ,Q and J are the Arnowitt–Deser–Misner (ADM) mass, charge and angular momentum
per unit length of the black string in z direction, respectively, � is the cosmological constant.

The horizons are determined by

�ρ = α4ρ4 − 2(3λ − 1)Mαρ +
4(3λ − 1)

λ + 1
Q2 = 0. (3)

When λ > 1/3 and Q2 � (3/8)(λ + 1)M4/3(3λ − 1)1/3/21/3, equation (3) has two positive
real roots. We use ρH to denote the position of the outer horizon.

The Bekenstein–Hawking entropy (BHE) per unit length of the black string in z direction
is

SBH = AH

4
= παρ2

H

2

√
λ + 1

3λ − 1
, (4)

where AH = ∫∫ {√g22 g33}ρ=ρH
dz dϕ is the horizon area.

In the dragging coordinates, the spacetime line element is

ds2 = −g̃00 dt2 +
α2ρ2

�ρ

dρ2 + α2ρ2 dz2, (5)

where

g̃00 = g00 − g2
03

g33
= − α2ρ2�ρ

�ρ + �ρ

. (6)

The dragging angular velocity is

	H = −g03

g33

∣∣∣∣
ρ=ρH

= 4aα2

3(1 + λ)
. (7)

Equation (7) shows that the dragging angular velocity of a black string does not depend
on its mass and horizon radius.

Following the Parikh–Wilczek method, we make the following transformation to obtain
a coordinate system, which behaves well at the horizon and which is flat Euclidean space in
radial to constant-time slices:

dt = dT + f (ρ, z) dρ + g(ρ, z) dz, (8)

with the integrability condition

∂f (ρ, z)

∂z
= ∂g(ρ, z)

∂ρ
, (9)
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and let

α2ρ2

�ρ

+ f 2g̃00 = 1. (10)

Then, we obtain a new line element (namely Painlevé one)

ds2 = g̃00 dT 2 + 2

√
g̃00

(
1 − α2ρ2

�ρ

)
dT dρ + dρ2 + (α2ρ2 + g2g̃00) dz2

+ 2g̃00g dT dz + 2g

√
g̃00

(
1 − α2ρ2

�ρ

)
dρ dz. (11)

The new coordinate system has a number of attractive features. First, it is well behaved
at the horizon. Second, constant-time slices are just flat Euclidean space in radial. Third, ∂T

is a Killing vector in the global spacetime. Finally, the metric in this new coordinates satisfies
Landau’s condition of coordinate clock synchronization which is given by [20]

∂

∂xj

(
− g0i

g00

)
= ∂

∂xi

(
−g0j

g00

)
, (i, j = 1, 2, 3). (12)

That is, the coordinate clock synchronization in the Painlevé coordinates can be transmitted
from one place to another though the line element is not diagonal. In quantum mechanics, it is
an instantaneous process that particle tunnels across a barrier. Thus, this feature is necessary
for us to discuss the tunnelling process.

The radial outgoing null geodesic is given by

ρ̇ = dρ

dT
= αρ�ρ(

αρ +
√

α2ρ2 − �ρ

)√
�ρ + �ρ

. (13)

If the particle’s self-gravitation, energy conservation and angular momentum conservation
are taken into account, when a particle of energy ω and angular momentum aω is emitted,
the black string’s ADM mass and angular momentum will become M − ω and a(M − ω),
and all of the equations which are related with rH (M) should be used with M → M − ω.
Since the metric is of cylindrical symmetry, we regard the outgoing particle as a cylindrical
shell of energy and angular momentum during the tunnelling process. On the other hand,
the coordinate ϕ does not exist in equation (11), that is, ϕ is an ignorable coordinate in the
Lagrange function. In order to eliminate the freedom of ϕ, the action of the outgoing particle
which crosses the horizon outwards from the initial radius ρi to the final radius ρj can be
written as [15]

Z =
∫ tj

ti

(L − Pϕϕ̇) dt =
∫ ρj

ρi

Pr dρ −
∫ ϕj

ϕi

Pϕ dϕ

=
∫ ρj

ρi

∫ Pρ

0
dPρ dρ −

∫ ϕj

ϕi

∫ Pϕ

0
dPϕ dϕ, (14)

where Pρ and Pϕ are the canonical momentum conjugates to ρ and ϕ. Using the Hamilton’s
equation

dρ

dt
= dH

dPρ

∣∣∣∣
(ρ,ϕ,Pϕ)

,
dϕ

dt
= dH

dPϕ

∣∣∣∣
(ρ,ϕ,Pρ)

, (15)

where

dH |(ρ,ϕ,Pϕ) = dM, dH |(ρ,ϕ,Pρ) = 	H dJ, (16)
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we find that equation (14) becomes

Z = 3λ − 1

2

∫ ρj

ρi

∫ M−ω

M

(
αρ +

√
α2ρ2 − �ρ

)√
�ρ + �ρ

αρ�ρ

dM dρ. (17)

It is easy to find that ρ = ρH is a pole. The integral can be evaluated by deforming the
contour around the pole, so as to ensure that positive energy solution decay in time. Note that
all real parts, divergent or not, can be discarded since they only contribute a phase. Integrating
over ρ, we obtain

Z = −i
√

(3λ − 1)(1 + λ)πα2
∫ M−ω

M

ρ2
H

�′
ρ(rH )

dM. (18)

From the horizon equation �ρ(ρH ) = 0, we can easily obtain

dM = �′(ρH )

2(3λ − 1)αρH

dρH , (19)

upon which the action (18) becomes

Z = − iπα

2

√
1 + λ

3λ − 1

∫ ρj

ρi

ρH dρH = − iπα

4

√
1 + λ

3λ − 1

(
ρ2

j − ρ2
i

)
. (20)

Adopting the Wentzel–Kramers–Brillouin approximation, the relationship between the
tunnelling probability of the particle and the imaginary part of the action is described by
� ∼ exp(−2 Im Z) [21]. Therefore,

� ∼ exp

(
πα

2

√
1 + λ

3λ − 1

(
ρ2

j − ρ2
i

)) = exp(�SBH), (21)

where �SBH = SBH(M − ω) − SBH(M) is the change in the BHE per unit length black string
before and after the emission. This result is obviously consistent with an underlying unitary
theory.

When Q = a = 0, that is, for a neutral and static black string, after expanding �SBH in
ω we have

� ∼ exp(�SBH) = exp

(
− 42/3π

3αM1/3
ω − 42/3π

9αM4/3
ω2 + O(ω2)

)
= exp(−βω − βω2/6M + O(ω2)), (22)

where β = (4π/3α)(4M)−1/3 is the inverse temperature. Obviously, the corrected spectrum
is not exactly thermal. The leading-order term gives the well-known thermal Boltzmann factor
e−βω. The corrections are indicative of a ‘grey-body’ factor in the emission spectrum, that is,
a deviation from pure thermality [16].

We should note that the emission rate (21) for cylindrically symmetric black string has
completely the same functional form as that for spherically symmetric or axisymmetric black
holes.
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